
CE417: Introduction to Artificial Intelligence
Sharif University of Technology
Fall 2022

“Artificial Intelligence: A Modern Approach”, 3rd Edition, Chapter 4
Most slides have been adapted from CS188, UC Berkeley.

Soleymani

Local Search



Outline

• Local search & optimization algorithms
• Hill-climbing search
• Simulated annealing search
• Local beam search
• Genetic algorithms

2



Local search algorithms
• In many optimization problems, path is irrelevant; the goal state is the

solution
state space = set of “complete” configurations

find configuration satisfying constraints, e.g., n-queens problem; or, find
optimal configuration, e.g., travelling salesperson problem

3



Local search algorithms
• In many optimization problems, path is irrelevant; the goal state is the

solution
state space = set of “complete” configurations

find configuration satisfying constraints, e.g., n-queens problem; or, find
optimal configuration, e.g., travelling salesperson problem

• In such cases, can use iterative improvement algorithms: keep a single
“current” state, try to improve it

• Constant space, suitable for online as well as offline search
• More or less unavoidable if the “state” is yourself (i.e., learning)

4



Sample problems for local & systematic search 

• Path to goal is important
• Theorem proving
• Route finding
• 8-Puzzle
• Chess

• Goal state itself is important
• 8 Queens
• TSP
• VLSI Layout
• Job-Shop Scheduling
• Automatic program generation

5



Local Search

• Tree search keeps unexplored alternatives on the frontier
(ensures completeness)

• Local search: improve a single option (no frontier)
• New successor function: local changes

• Generally much faster and more memory efficient (but
incomplete and suboptimal)

6



Hill Climbing

• Simple, general idea:
• Start wherever
• Repeat: move to the best neighboring state
• If no neighbors better than current, quit

• What’s bad about this approach?
• Complete?
• Optimal?

• What’s good about it?

7



Hill-climbing algorithm

function HILL-CLIMBING(problem) returns a state
current← make-node(problem.initial-state)
loop do

neighbor← a highest-valued successor of current
if neighbor.value ≤ current.value then

return current.state
current← neighbor

“Like climbing Everest in thick fog with amnesia” 8

Node only contains the state and the value of objective function in that state (not 
path)
Search strategy: steepest ascent among immediate neighbors until reaching a peak

Current node is replaced by the best 
successor (if it is better than current node)



Hill-climbing search is greedy

• Greedy local search: considering only one step ahead and
select the best successor state (steepest ascent)
• Rapid progress toward a solution

• Usually quite easy to improve a bad solution

Optimal when starting 
in one of these states

9



Global and local maxima

10
2-d state space



Example: n-queens

• Put n queens on an n × n board with no two queens on the
same row, column, or diagonal
• What is state-space?
• What is objective function?

11



Heuristic for n-queens problem

• Goal: n queens on board with no conflicts, i.e., no queen attacking
another

• States: n queens on board, one per column
• Successors: move a queen in its column
• Heuristic value function: number of conflicts

12



Local search: 8-queens problem
• States: 8 queens on the board, one per column (88 ≈ 17 𝑚𝑖𝑙𝑙𝑖𝑜𝑛)
• Successors(s): all states resulted from 𝑠 by moving a single queen to
another square of the same column (8×7 = 56)

• Cost function ℎ(s): number of queen pairs that are attacking each
other, directly or indirectly

• Global minimum: ℎ 𝑠 = 0
ℎ(𝑠) = 17 successors objective values

Red: best successors13



Global and local maxima
Random restarts
• find global optimum
• duh

Random sideways moves
• Escape from shoulders
• Loop forever on flat

local maxima

Stochastic hill climbing
• First-choice hill climbing

14
2-d state space



Sideways move

• Sideways move: plateau may be a shoulder so keep going
sideways moves when there is no uphill move
• Problem: infinite loop where flat local max

• Solution: upper bound on the number of consecutive sideways moves

• Result on 8-queens:
• Limit = 100 for consecutive sideways moves

• 94% success instead of 14% success
• on average, 21 steps when succeeding and 64 steps when failing

15



Stochastic hill climbing

• Randomly chooses among the available uphill moves according
to the steepness of these moves
• 𝑃(𝑆’) is an increasing function of ℎ(𝑠’) − ℎ(𝑠)

• First-choice hill climbing: generating successors randomly until
one better than the current state is found
• Good when number of successors is high

16



Random-restart hill climbing
• All previous versions are incomplete

• Getting stuck on local max

• while state ≠ goal do
run hill-climbing search from a random initial state

• 𝑝: probability of success in each hill-climbing search
• Expected no of restarts = 1/𝑝

• Reasonable solution can be usually obtained after a small no of restarts
• Although NP-Hard problems typically have an exponential number of local

maxima

17



Hill-climbing on the 8-queens problem

• No sideways moves:
• Succeeds w/ prob. 0.14
• Average number of moves per trial:
• 4 when succeeding, 3 when getting stuck

• Expected total number of moves needed:
• 3(1-p)/p + 4 =~ 22 moves

• Allowing 100 sideways moves:
• Succeeds w/ prob. 0.94
• Average number of moves per trial:
• 21 when succeeding, 65 when getting stuck

• Expected total number of moves needed:
• 65(1-p)/p + 21 =~ 25 moves

Moral: algorithms with knobs
to twiddle are irritating

18



Simulated annealing

• Resembles the annealing process used to cool metals slowly to
reach an ordered (low-energy) state
• Basic idea:

• Allow “bad” moves occasionally, depending on “temperature”
• High temperature => more bad moves allowed, shake the system out of

its local minimum
• Gradually reduce temperature according to some schedule
• Sounds pretty flaky, doesn’t it?

19



Simulated Annealing (SA) Search
• Hill climbing:move to a better state

• Efficient, but incomplete (can stuck in local maxima)

• Random walk:move to a random successor
• Asymptotically complete, but extremely inefficient

• Idea: Escape local maxima by allowing some "bad" moves but
gradually decrease their frequency.
• More exploration at start and gradually hill-climbing become more

frequently selected strategy

20



Simulated annealing algorithm

function SIMULATED-ANNEALING(problem,schedule) returns a state
current ← problem.initial-state
for t = 1 to ∞ do

T ←schedule(t)
if T = 0 then return current
next ← a randomly selected successor of current
∆E ← next.value – current.value
if ∆E > 0 then current ← next

else current ← next only with probability proportional to e∆E/T

21

} Pick a random successor of the
current state

} If it is better than the current
state go to it

} Otherwise, accept the transition
with a probability

𝑇(𝑡) = 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒[𝑡] is a decreasing series

E(s):	objective	function	



Probability of state transition

𝑃 𝑠, 𝑠2, 𝑡 = 𝛼× (
1 𝑖𝑓 𝐸 𝑠′ > 𝐸(𝑠)

𝑒(3(4!)53(4))/7(8) 𝑜. 𝑤.

• Probability of “un-optimizing” (∆𝐸 = 𝐸 𝑠2 − 𝐸 𝑠 < 0)
random movements depends on badness of move and
temperature
• Badness of movement: worse movements get less probability
• Temperature
• High temperature at start: higher probability for bad random moves
• Gradually reducing temperature: random bad movements become more

unlikely and thus hill-climbing moves increase

22

A successor of 𝑠



Simulated Annealing

• Is this convergence an interesting guarantee?

• Sounds like magic, but reality is reality:
• The more downhill steps you need to escape a local optimum, the less likely

you are to ever make them all in a row
• “Slowly enough” may mean exponentially slowly
• Random restart hillclimbing also converges to optimal state…

• Simulated annealing and its relatives are a key workhorse in VLSI
layout and other optimal configuration problems

23



Local beam search

• Keep track of 𝑘 states
• Instead of just one in hill-climbing and simulated annealing

24

Start with 𝑘 randomly generated states
Loop:

All the successors of all k states are generated
If any one is a goal state then stop
else select the k best successors from the complete 
list of successors and repeat.



Local Beam Search

• Like greedy hillclimbing search, but keep K states at all times:

• Variables: beam size, encourage diversity?
• The best choice in MANY practical settings

• Problem: Concentration in a small region after some iterations
• Solution: Stochastic beam search
• Choose k successors at random with probability that is an increasing function of

their objective value

Greedy Search Beam Search

25



Beam search example (K=4)

26

8

6

7

8

9

7

7

7

6

8

9

9

8

7

9

3

5

10

10

9

X
X

X

X
9

8

9

9

10

9

9

10

X

X

X

X



Local beam search

• Basic idea:
• K copies of a local search algorithm, initialized randomly
• For each iteration

• Generate ALL successors from K current states
• Choose best K of these to be the new current states

• Why is this different from K local searches in parallel?
• The searches communicate! “Come over here, the grass is
greener!”

• What other well-known algorithm does this remind you
of?
• Evolution!

Or, K chosen randomly with 
a bias towards good ones

27



Genetic Algorithms (GAs)

• Genetic algorithms use a natural selection metaphor
• Resample K individuals at each step (selection) weighted by fitness function
• Combine by pairwise crossover operators, plus mutation to give variety

• A variant of stochastic beam search
• Successors can be generated by combining two parent states in addition to
modifying a single state

28



Genetic Algorithm (GA)
• A state (solution) is represented as a string over a finite alphabet
• Like a chromosome containing genes

• Start with k randomly generated states (population)

• Evaluation function to evaluate states (fitness function)
• Higher values for better states

• Combining two parent states and getting offsprings (cross-over)
• Cross-over point can be selected randomly

• Reproduced states can be slightly modified (mutation)

• The next generation of states is produced by selection (based on fitness
function), crossover, and mutation

29



Example: N-Queens

• Does crossover make sense here?
• What would mutation be?
• What would a good fitness function be?

30



Chromosome & fitness: 8-queens 

31

2 4 7 4 8 5 5 2

} Describe the individual (or state) as a string

} Fitness function: number of non-attacking pairs of queens
} 24 for above figure



Genetic operators: 8-queens

• Cross-over: To select some part of the state from one parent
and the rest from another.

32

6 7 2 4 7 5 8 8 7 5 2 5 1 4 4 7 6 7 2 5 1 4 4 7



Genetic operators: 8-queens

33

• Mutation: To change a small part of one state with a small
probability.

6 7 2 5 1 4 4 7 6 7 2 5 1 3 4 7



A Genetic algorithm diagram

34

Start

Generate initial 
population

Individual Evaluation

Crossover

Mutation

Stop
Criteria?

Solution
Yes

Selection

6 7 2 4 7 5 8 8

3 1 2 8 2 5 6 6

8 1 4 2 5 3 7 1

…



A variant of genetic algorithm: Selection

• Fitness function: number of non-attacking pairs of queens
• min = 0, max = 8 × 7/2 = 28
• Reproduction rate(i) = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖)/∑!"#$ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑘)
• e.g., 24/(24+23+20+11) = 31%

35



A variant of genetic algorithm: Crossover

36



Genetic Algorithm: Mutation

• Possibly the most misunderstood, misapplied (and even maligned) technique around

37



Genetic algorithm properties

38

• Why does a genetic algorithm usually take large steps in
earlier generations and smaller steps later?
• Initially, population individuals are diverse

• Cross-over operation on different parent states can produce a state
long a way from both parents

• More similar individuals gradually appear in the population

• Cross-over as a distinction property of GA
• Ability to combine large blocks of genes evolved independently

• Representation has an important role in benefit of incorporating
crossover operator in GA



Local search vs. systematic search

Systematic search Local search

Solution Path from initial state to the goal Solution state itself

Method Systematically trying different paths 
from an initial state

Keeping a single or more "current" 
states and trying to improve them

State space Usually incremental Complete configuration

Memory Usually very high Usually very little (constant)

Time Finding optimal solutions in small 
state spaces

Finding reasonable solutions in large 
or infinite (continuous) state spaces

Scope Search Search & optimization problems

39



• Many configuration and optimization problems can be
formulated as local search
• General families of algorithms:

• Hill-climbing, continuous optimization
• Simulated annealing (and other stochastic methods)
• Local beam search: multiple interaction searches
• Genetic algorithms: break and recombine states

We will see local search algorithms for continuous spaces

Many machine learning algorithms are local searches

Summary

40


