

Local Search

CE417: Introduction to Artificial Intelligence Sharif University of Technology Fall 2022

Soleymani

"Artificial Intelligence: A Modern Approach", 3rd Edition, Chapter 4 Most slides have been adapted from CS188, UC Berkeley.

Outline

- Local search & optimization algorithms
	- Hill-climbing search
	- Simulated annealing search
	- Local beam search
	- Genetic algorithms

Local search algorithms

• In many optimization problems, *path* is irrelevant; the goal state *is* the solution

state space $=$ set of "complete" configurations

find *configuration satisfying constraints*, e.g., n-queens problem; or, find *optimal configuration*, e.g., travelling salesperson problem

Local search algorithms

• In many optimization problems, *path* is irrelevant; the goal state *is* the solution

state space $=$ set of "complete" configurations

find *configuration satisfying constraints*, e.g., n-queens problem; or, find *optimal configuration*, e.g., travelling salesperson problem

- In such cases, can use *iterative improvement* algorithms: keep a single "current" state, try to improve it
- Constant space, suitable for online as well as offline search
- More or less unavoidable if the "state" is yourself (i.e., learning)

Sample problems for local & systematic search

- Path to goal is important
	- Theorem proving
	- Route finding
	- 8-Puzzle
	- Chess
- Goal state itself is important
	- 8 Queens
	- TSP
	- VLSI Layout
	- Job-Shop Scheduling
	- Automatic program generation

Local Search

- Tree search keeps unexplored alternatives on the frontier (ensures completeness)
- Local search: improve a single option (no frontier)
	- New successor function: local changes
- Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

- Simple, general idea:
	- Start wherever
	- Repeat: move to the best neighboring state
	- If no neighbors better than current, quit
- What's bad about this approach?
	- Complete?
	- Optimal?
- What's good about it?

Hill-climbing algorithm

Node only contains the state and the value of objective function in that state (not path)

Search strategy: steepest ascent among immediate neighbors until reaching a peak

function HILL-CLIMBING(problem) **returns** a state current ← make-node(problem.initial-state) **loop do** $neighbor \leftarrow a$ highest-valued successor of current **if** neighbor.value ≤ current.value **then return** current.state current ← neighbor Current node is replaced by the best

successor (if it is better than current node)

"Like climbing Everest in thick fog with amnesia" ⁸

Hill-climbing search is greedy

- Greedy local search: considering only one step ahead and select the best successor state (steepest ascent)
	- Rapid progress toward a solution
		- Usually quite easy to improve a bad solution

Global and local maxima

Example: *n*-queens

- Put *n* queens on an *n × n* board with no two queens on the same row, column, or diagonal
- What is state-space?
- What is objective function?

Heuristic for *n*-queens problem

- Goal: n queens on board with no *conflicts*, i.e., no queen attacking another
- States: n queens on board, one per column
- Successors: move a queen in its column
- Heuristic value function: number of conflicts

Local search: 8-queens problem

- States: 8 queens on the board, one per column $(8^8 \approx 17 \ million)$
- Successors(s): all states resulted from s by moving a single queen to another square of the same column $(8\times7 = 56)$
- Cost function $h(s)$: number of queen pairs that are attacking each other, directly or indirectly
- Global minimum: $h(s) = 0$

 $h(s) = 17$ successors objective values

¹³ Red: best successors

Global and local maxima

Sideways move

- Sideways move: plateau may be a shoulder so keep going sideways moves when there is no uphill move
	- Problem: infinite loop where flat local max
		- Solution: upper bound on the number of consecutive sideways moves
- Result on 8-queens:
	- $Limit = 100$ for consecutive sideways moves
		- 94% success instead of 14% success
			- on average, 21 steps when succeeding and 64 steps when failing

Stochastic hill climbing

- Randomly chooses among the available uphill moves according to the steepness of these moves
	- $P(S')$ is an increasing function of $h(s') h(s)$
- First-choice hill climbing: generating successors randomly until one better than the current state is found
	- Good when number of successors is high

Random-restart hill climbing

- All previous versions are incomplete
	- Getting stuck on local max
- **while** state ≠ goal **do**

run hill-climbing search from a random initial state

- p : probability of success in each hill-climbing search
	- Expected no of restarts = $1/p$
- Reasonable solution can be usually obtained after a small no of restarts
	- Although NP-Hard problems typically have an exponential number of local maxima

Hill-climbing on the 8-queens problem

- No sideways moves:
	- Succeeds w/ prob. 0.14
	- Average number of moves per trial:
		- 4 when succeeding, 3 when getting stuck
	- Expected total number of moves needed:
		- $3(1-p)/p + 4 = ~ 22$ moves
- Allowing 100 sideways moves:
	- Succeeds w/ prob. 0.94
	- Average number of moves per trial:
		- 21 when succeeding, 65 when getting stuck
	- Expected total number of moves needed:
		- $65(1-p)/p + 21 = ~ 25$ moves

Moral: algorithms with knobs to twiddle are irritating

Simulated annealing

- Resembles the annealing process used to cool metals slowly to reach an ordered (low-energy) state
- Basic idea:
	- Allow "bad" moves occasionally, depending on "temperature"
	- High temperature => more bad moves allowed, shake the system out of its local minimum
	- Gradually reduce temperature according to some schedule
	- Sounds pretty flaky, doesn't it?

Simulated Annealing (SA) Search

- **Hill climbing**: move to ^a better state
	- Efficient, but incomplete (can stuck in local maxima)
- **Random walk**: move to ^a random successor
	- Asymptotically complete, but extremely inefficient
- Idea: Escape local maxima by allowing some "bad" moves but gradually decrease their frequency.
	- More exploration at start and gradually hill-climbing become more frequently selected strategy

Simulated annealing algorithm

function SIMULATED-ANNEALING(problem,schedule) **returns** a state

- current ← problem.initial-state
- **for** $t = 1$ **to** ∞ **do**

 $T \leftarrow$ schedule(t) **if** T = 0 **then return** current $next \leftarrow$ a randomly selected successor of current $\Delta E \leftarrow$ next.value – current.value **if** ∆E > 0 **then** current ← next

else current ← next only with probability proportional to e[∆]E/T

 $T(t) = schedule[t]$ is a decreasing series

 $E(s)$: objective function

- **Pick a random successor of the** current state
- \blacktriangleright If it is better than the current state go to it
- \triangleright Otherwise, accept the transition with a probability

Probability of state transition

A successor of s
\n
$$
P(s, s', t) = \alpha \times \begin{cases} 1 & \text{if } E(s') > E(s) \\ e^{(E(s') - E(s))/T(t)} & \text{o.w.} \end{cases}
$$

- Probability of "un-optimizing" ($\Delta E = E(s') E(s) < 0$) random movements depends on badness of move and **temperature**
	- Badness of movement: worse movements get less probability
	- Temperature
		- High temperature at start: higher probability for bad random moves
		- Gradually reducing temperature: random bad movements become more unlikely and thus hill-climbing moves increase

Simulated Annealing

- Is this convergence an interesting guarantee?
- Sounds like magic, but reality is reality:
	- The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
	- "Slowly enough" may mean exponentially slowly
	- Random restart hillclimbing also converges to optimal state...
- Simulated annealing and its relatives are a key workhorse in VLSI layout and other optimal configuration problems

Local beam search

- Keep track of k states
	- Instead of just one in hill-climbing and simulated annealing

Start with k randomly generated states Loop:

All the successors of all *k* states are generated **If** any one is a goal state **then** stop **else** select the *k* best successors from the complete list of successors and repeat.

Local Beam Search

• Like greedy hillclimbing search, but keep K states at all times:

Greedy Search Beam Search

- Variables: beam size, encourage diversity?
- The best choice in MANY practical settings
- Problem: Concentration in a small region after some iterations
	- Solution: Stochastic beam search
		- Choose k successors at random with probability that is an increasing function of their objective value

Beam search example (*K*=4)

Local beam search

Basic idea:

- For each iteration Or, K chosen randomly with a bias towards good ones
	- Generate ALL successors from *K* current states
	- Choose best K of these to be the new current states
- Why is this different from *K* local searches in parallel?
	- The searches *communicate*! "Come over here, the grass is greener!"
- What other well-known algorithm does this remind you of?
	- Evolution!

Genetic Algorithms (GAs)

- Genetic algorithms use a natural selection metaphor
	- Resample *K* individuals at each step (selection) weighted by fitness function
	- Combine by pairwise crossover operators, plus mutation to give variety
- A variant of stochastic beam search
	- Successors can be generated by combining two parent states in addition to modifying a single state

Genetic Algorithm (GA)

- A state (solution) is represented as a string over a finite alphabet
	- Like a chromosome containing genes
- Start with *k* randomly generated states (population)
- Evaluation function to evaluate states (fitness function)
	- Higher values for better states
- Combining two parent states and getting offsprings (cross-over)
	- Cross-over point can be selected randomly
- Reproduced states can be slightly modified (mutation)
- The next generation of states is produced by selection (based on fitness function), crossover, and mutation

Example: N-Queens

- Does crossover make sense here?
- What would mutation be?
- What would a good fitness function be?

Chromosome & fitness: 8-queens

} Describe the individual (or state) as a string

▶ Fitness function: number of non-attacking pairs of queens

▶ 24 for above figure

Genetic operators: 8-queens

• Cross-over: To select some part of the state from one parent and the rest from another.

Genetic operators: 8-queens

• Mutation: To change a small part of one state with a small probability.

A Genetic algorithm diagram

A variant of genetic algorithm: Selection

- Fitness function: number of non-attacking pairs of queens
	- $min = 0, max = 8 \times 7/2 = 28$
	- Reproduction rate(*i*) = $fitness(i) / \sum_{k=1}^{n} fitness(k)$
		- e.g., $24/(24+23+20+11) = 31\%$

A variant of genetic algorithm: Crossover

Genetic Algorithm: Mutation

• Possibly the most misunderstood, misapplied (and even maligned) technique around

Genetic algorithm properties

- Why does a genetic algorithm usually take large steps in earlier generations and smaller steps later?
	- Initially, population individuals are diverse
		- Cross-over operation on different parent states can produce a state long a way from both parents
	- More similar individuals gradually appear in the population
- Cross-over as a distinction property of GA
	- Ability to combine large blocks of genes evolved independently
		- Representation has an important role in benefit of incorporating crossover operator in GA

Local search vs. systematic search

Summary

- Many configuration and optimization problems can be formulated as local search
- General families of algorithms:
	- Hill-climbing, continuous optimization
	- Simulated annealing (and other stochastic methods)
	- Local beam search: multiple interaction searches
	- Genetic algorithms: break and recombine states

We will see local search algorithms for continuous spaces

Many machine learning algorithms are local searches